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    Chapter 11   
 Rescuing Public Health Data 
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    Abstract     Modeling approaches in science can be dichotomized between the 
statistical versus the mathematical models. The former are strongly data oriented 
(experimental or fi eld data) and can be used for quantitative predictions. The latter 
are more qualitative and conceptual and focus more on explaining the mechanisms 
ruling the phenomena under study. A powerful approach that has been developed 
recently aims at combining the advantages of both methods by fi tting mathematical 
models to real data. Modern computers allow to simulate models that are more and 
more complex. Furthermore, recent statistical developments and algorithms allow 
to fi t models to data that are importantly noisy and generated from natural systems 
that can be strongly nonlinear. A requirement is to have numerous enough data 
containing enough information. These technical advances bring new opportunities 
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to the scientifi c method. From a practical point of view, this method extends the 
possibilities of prediction by extrapolation. We here present how such methodology 
can be applied in epidemiology. Human infectious diseases have been routinely 
monitored by health authorities for a long time in a number of countries around the 
world. Yet, until recently, such data have rarely been exploited neither for scientifi c 
nor for public health purposes, the main reason being a quality of data often judged 
too poor (bias, missing values, etc.). On the other hand, these data are impressively 
abundant and offer unique opportunity to study infectious diseases over broad 
spatial and temporal ranges. We show how the abundance of data can partially 
compensate their quality issues and how biases can be dealt with in an effi cient 
manner. Such public health data have been extensively collected in many parts of 
the world but have rarely been exploited so far. Furthermore, most of these data are 
currently in paper forms without any copy and thus prone to destruction. One aim 
of the Bill & Melinda Gates Foundation-funded Vaccine Modeling Initiative is to 
collect these data and convert them to electronic databases that are both safe and 
open for the whole scientifi c community for thorough exploitation. We present the 
achievement of this initiative on dengue fever in Southeast Asia.  

11.1          Introduction 

 Tycho Brahe (1546–1601) was born 3 years after Nicolaus Copernicus (1473–
1543)’s death and 18 years before Galileo Galilei (1564–1642)’s birth. One of his 
major occupations was astronomy, and he spent a substantial part of his life labori-
ously recording the positions of celestial objects. It is by using this enormous amount 
of data – of exceptional quality for that time – that Johannes Kepler (1571–1630), 
one of his very last assistants (he had more than 100 during his career), derived his 
laws of planetary motion between 1609 and 1619. These laws largely infl uenced 
Isaac Newton (1642–1727) in the elaboration of his theory of universal gravitation 
a century after Tycho Brahe started collecting data (1687). 

 This famous example, from the time when modern science really emerged (nota-
bly with Galileo Galilei and his controversial defense of heliocentrism), illustrates 
perfectly the constant dialog between data analyses and theoretical developments 
that has been at the basis of the scientifi c method since then. Astronomy has this in 
common with epidemiology that experimentation is impossible. Data come uniquely 
from observations of the natural system. This has both advantages and disadvan-
tages. The disadvantages are obvious and pertain to the issues of data quality and 
control of potential confounding effects. But observation data are also strong assets 
that are rarely recognized as they should: they are the real data of the natural system 
and not data of an artifi cial experimental system. 

 Epidemiology is the science studying the distribution of diseases in space and 
time. Modern epidemiology is considered to have emerged with the pioneering 
investigation of John Snow (1813–1858) on the causes of cholera in London during 
the third pandemic (1846–1861). By carefully mapping the addresses of all recorded 
cholera cases, John Snow could identify clusters of cases and thus hypothesize 
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on the role of one water distribution pump in the infection of the inhabitants of 
the neighbor. By removing the handle of the pump, he famously ended the epidemic. 
This event remains today as a classical example of successful public health inter-
vention. More than that, these observations and his intervention proved the role of 
water in the transmission of the disease, which was eagerly debated at the time, 30 
years before the identifi cation of the etiologic agent by Robert Koch (1843–1910). 

 This chapter is about the key role that public health surveillance data play in the 
science of epidemiology. For long, the purpose of surveillance data collection was 
limited to the purpose of local or national public health monitoring only, and 
epidemiological investigations could be envisaged only in the context of well-
defi ned cohort studies. The recent recognition that unique and extremely valuable 
information could also be drawn from surveillance data, despite their inherent 
quality issues, opens totally new avenues of investigation. But at the same time that 
the value of such data is recognized, their persistence is more than ever threatened, 
and it is likely that if no action is taken, a large proportion of it will be lost before 
having the opportunity to be analyzed by scientists. That would constitute an impor-
tant loss for science but also for global and public health. In this chapter, we review 
the pros and cons of surveillance data and show how these can be efficiently 
analyzed to get an understanding of epidemiological systems that could have not be 
reached by any other classical epidemiological study. After a review of the major 
surveillance data- based results obtained over the last decade, we will present the 
challenges we are faced with concerning preservation and sharing of public 
health data and the initiatives that are currently undertaken to preserve this global 
source of historical information and improve its quality for the future. The end of 
the chapter will be illustrated by the initiative carried out for dengue syndromic data 
in Southeast Asia.  

11.2     The Scientifi c Method 

 The scientifi c reasoning grounds on the hypothetico-deductive method in which 
theoretical hypotheses are formulated and empirically tested for possible refutation. 
The experimental approach has long been and still holds as the gold standard for 
hypothesis testing. A well-designed experimental setup allows, fi rst, to control for 
effects that are of no interest to the study but still can affect the results (confounding 
variables) and, second, to produce data amenable to proper and effi cient statistical 
treatments. The control of confounding variables addresses the “everything else 
being equal” prerogative by ensuring that individuals of the sample are as homoge-
neous as  possible for the factors that are not the focus of the analysis. The classical 
statistical theory and scientifi c controlled experiments developed hand in hand in 
the fi eld of agronomy during the fi rst half of the twentieth century, during which 
most of the classical tests and models (t-test, F-test, χ 2 -test, analysis of variance, 
linear regression, etc.) were developed by researchers such as Karl Pearson (1857–
1936), Ronald Fisher (1890–1962), and Jerzy Neyman (1894–1981), to cite only the 
most famous of them. This statistical framework is extremely powerful but has the 
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inconvenience of being also extremely restrictive. The famous three assumptions of 
the linear regression (normality, independence, and homoscedasticity of data) illus-
trate such strong constraints of the statistical theory, and researchers strive hard to 
comply with them. Experimental design is the most appropriate way to do so. Out 
of despair, others sometimes resort to ad hoc data transformation. 

 If experimental designs allow to effi ciently control for confounding effects to 
statistically test for effects under study, they also have major drawbacks that tend, 
too often, to be eluded. Indeed, one should not lose sight of the fact that his/her 
experimentally controlled results, however statistically strong they may be, are true 
for the specifi c system under study, in that case the experimental setup, which is 
generally far from a real natural system. What is true in the laboratory may not be 
true in nature, and vice versa. This is all too much known by pharmacologists who 
design new medicines. A new engineered molecule has to go through a series of 
successive tests and fi lters before being granted for release in the general popula-
tion. One of the fi nal of such steps – clinical trial – aims at verifying that the 
effects of the molecule in the general population is not different from those 
observed in the laboratory. A number of molecules have failed this last stage, with 
excellent results in the laboratory and highly detrimental effect in real fi eld situa-
tions. Some antimalaria molecules are thus extremely effi cient in controlled labora-
tory situations and yet totally ineffi cient in natural for reasons not always understood 
(Nacher  2001 ,  2006 ). The experimental method, despite its rigor and powerfulness, 
has thus a major drawback, which is that the system under study is not exactly the 
real natural system. 

 As reminded in the introduction, experimentation is impossible in epidemiology 
for obvious ethical reasons. Thus, the abovementioned problem of representativity 
of nature does not hold in epidemiology. However, other problems naturally arise, 
related to the ability of analyzing data that are highly variable, biased, incomplete, 
and complex. Mathematical modeling is of great use to this.  

11.3     Mathematical and Computational Resources 

 Modeling is more and more used in biology in general and in health sciences in 
particular, as attested by the growing number of scientifi c publications including 
modeling work (Levin et al.  1999 ; Cohen  2004 ). However, behind the word of 
 modeling are a large number of different practices that differ in their approaches 
and their aims and that are quite often mixed up (Hilborn and Mangel  1997 ). For 
example, a major distinction stands between mathematical modeling and statistical 
modeling. Statistical modeling is basically what has been treated in the previous 
paragraph. Such modeling is by essence data oriented and is interested in the 
relationships between variables. Its purposes include hypotheses testing and pre-
dictions. As explained above, this modeling approach is effi cient as long as the data 
in question comply with the underlying assumptions of the statistical theory at use. 
At the opposite of this approach is mathematical modeling, which is typically 
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disconnected from data. Its fundamental aim is to understand the mechanics of 
the system that generate the observed relationships between variables. The major 
limitation of mathematical models, besides being disconnected from any form of 
real data, is that mathematical tractability often imposes oversimplifi cations of the 
system. Statistical and mathematical models oppose in many other respects: whereas 
statistical models are intrinsically quantitative, mathematical models are often 
qualitative; whereas statistical models are necessarily phenomenological, mathe-
matical models can be mechanistic; whereas statistical models are by nature very 
precise and specifi c (to the sample or the population from which this sample is 
drawn), mathematical models are more general but also more vague. 

 More and more, statistical and mathematical models are considered as extremes 
of a same continuum, and the emerging trend in science is now to adopt a model-
ing approach that combines the advantages of both statistical and mathematical 
modeling (Fig.  11.1 ).  

 This is made possible by both the availability of ever more data and the raising 
computational ability to process them. With the development of the statistical the-
ory of likelihood and, above all, its practical application to complex systems made 
possible by the availability of huge computer power, the idea now is to develop 
mathematical models both mechanistic and specifi c to a real system and to estimate 
its parameters by comparing its predicted variable values with real data. A model, 
be it mathematical or statistical, is made of two kinds of entities: the variables and 
the parameters (Fig.  11.2 ).  

 The variable, as its name indicates, is a quantity that varies and that can be 
measured directly. A number of diseased individuals is an typical example of a 
 variable. A parameter is a quantity that is fi xed by the modeler (or a program), 
which determines the fate of the variables’ values and which cannot be measured 
directly. The major difference between phenomenological statistical and mechanis-
tic mathematical models is that parameters do not necessarily – and most of the time 
they do not – have a biological meaning for statistical models, whereas they always 
have for mathematical models. The slope of a linear regression is a typical parameter 
for a statistical model: it does not mean much biologically besides giving an idea of 

  Fig. 11.1    Comparison of 
statistical and mathematical 
models as classically used. 
The trends today, thanks to 
the availability of enormous 
amount of data, but also to 
computer power, are to 
develop modeling approaches 
that combine the advantages 
of both statistical and 
mathematical models       
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the association between two variables. A recovery rate is a typical example of a 
parameter for a mathematical model: the parameter necessarily has a biological 
meaning, by construction. These parameters always have a clear biological meaning, 
and hence they may be diffi cult or even impossible to measure in practice. It is 
here that the method of maximum likelihood plays its powerful role in allowing to 
estimate the values of the model’s parameters. 

 A likelihood function depends on both data and parameters and expresses the 
probability that the data could have been generated by the model with specifi ed 
parameters’ values. For that, it compares the values of the model’s variables for 
which data are available with their values that are actually measured. The compari-
son is made probabilistically. With such a likelihood function, the game is easy in 
principle: looking for the combination of parameters’ values that yields the maxi-
mum likelihood. This combination gives the maximum-likelihood estimates of the 
parameters (Fig.  11.3 ).  

 All the powerfulness of the method lies here: by using information on a variable 
we can measure directly (such as the number of diseased individuals), we can 
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  Fig. 11.2    The classical SIR compartment model and its fi t to a local infl uenza epidemics. The total 
host population is partitioned into three compartments according to their clinical status, suscepti-
bles (S), infected (I), and recovered I, the three state variables of the model. The two parameters 
are the contact rate (β) and the recovery rate (γ). The  dots  are the data, i.e., number of infected 
children in an English school board from day 3 to day 14. We use the information in this data set 
to fi t the model-predicted prevalence ( full line curve ) as good as possible. This allows to make 
inference on the contact rate (1.67/day), the recovery rate (0.43/day), and the dynamics of the 
number of susceptibles and recovered ( dashed curves , respectively), two parameters, and two vari-
ables that could not be measured directly (Source of data: 4th March edition of the British Medical 
Journal, 1978)       
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estimate the value of parameters of biological importance that can be out of reach 
by direct measure, such as a recovery rate. If simple in principle, the method can 
quickly become complicated in practice, especially for models with a large number 
of variables and parameters. More and more effi cient searching algorithms and 
increasing computer power make such task more and more accessible. Thanks to 
their high fl exibility, mathematical models allow to analyze complex data that 
would not be possible to analyze with classical statistical tools. They also allow one 
to analyze it in a powerful manner by using as much information from the data as 
possible. Given that data collection can be extremely expensive, these two points are 
of prime value. 

 The use of mathematical models and the fi t of their parameters’ values to data are 
a major shift in the scientifi c methodology. Instead of forcing the nature to comply 
with a predefi ned restrictive – though powerful – statistical theoretical framework, 
the effort is now made on the theoretical side in developing mathematical models 
that allow to analyze any form of data, however complicated and unorthodox they 
may be. By being able to draw valuable information from any form of data, we thus 
broaden the possibilities of scientifi c investigation by several orders of magnitude.  

  Fig. 11.3    The likelihood function applied to the model of Fig.  11.2 . The  left  3D plot shows the 
log-likelihood surface as a function of the value of the two parameters β (contact rate) and γ (recov-
ery rate). The summit of this surface defi nes the maximum-likelihood estimates of the parameters 
(1.67 and 0.43, respectively). The two panels on the right show log-likelihood profi les and the use 
of the likelihood ratio test to estimate confi dence intervals of the estimations       
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11.4     Surveillance Data and Their Quality 

 Any patient who enters a hospital is, at some stage, recorded with basic information 
regarding his gender, age, address, symptoms, and sometimes diagnosis. The aim of 
such records is to monitor the hospital activity. Sometimes, hospitals communicate 
with each other and can possibly share or exchange information from their records. 
It is through such practices that coincidental apparitions of rare diseases in the 
early 1980s on both coasts of the USA fi rst alerted public health service about a new 
epidemic that soon after would be known all around the world as HIV/AIDS 
(Montagnier  2002 ). 

 Even long before the start of the fi rst large-scale vaccination campaigns, infectious 
diseases, especially the most prevalent ones, have been the object of surveillance, 
through networks of health professionals and institutions, either on a voluntary or a 
compulsory basis (Rohani and King  2010 ). The primary aim of such surveillance 
was public health monitoring, and it became readily used after the start of the fi rst 
vaccine policies in the 1940s and the 1950s in Europe and North America as a way 
of assessing the effi cacy of disease prevention. However, the use of such data for 
scientifi c purpose remained very limited. Indeed, researchers have long refrained 
from using surveillance data arguing on their poor quality. 

 It is a fact that surveillance data such as the ones described above suffer from a 
number of quality issues. The fi rst one is bias. Contrary to sentinel surveillance 
where a sample from the general population is chosen at random and actively tested 
for the disease under study (by serology or PCR), the surveillance data we are deal-
ing with here are passively recorded from the people who do check for medical aid, 
and this is the source of a number of potential biases. First, people looking for medi-
cal assistance are clearly not representative of the general population, and this is 
strongly affected by socioeconomic factors. The high sex ratio bias in favor of males 
among tuberculosis-diagnosed patients is interpreted in some countries as the result 
of social pressures or habits where females seek for medical care less than males, 
especially in the case of stigmatizing diseases such as tuberculosis (Neyrolles and 
Quintana-Murci  2009 ). Second, asymptomatic carriers obviously do not seek for 
medical care, and yet they can play an important role in the epidemiological dynamics 
of the disease. Third is the problem of diagnostic: contrary to active sentinel studies 
where sample sizes are small enough to allow the use of sensitive and specifi c 
molecular diagnosis methods, the diagnosis carried out in case of passive surveillance 
systems mostly relies on symptoms, and the criteria are rarely consistent neither 
in space (despite WHO’s efforts to homogenize it) nor in time, not speaking of the 
subjectivity of the examiner (HMN  2008 ). In addition to these biases, passive 
 surveillance data also often suffer from frequent errors or missing values. There can 
be also underreporting for very small incidences (where the medical staff is not alert 
enough about the risk of a particular disease) or for very large incidences (where the 
medical staff get overwhelmed with too many patients). 

 Surveillance data thus suffer from a number of serious quality issues. However, 
they still remain the unique source of information over large spatial and temporal 
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ranges. We thus have to fi nd clever ways to use this valuable source of information. 
There are basically two ways to deal with biases. The fi rst one is to use methods that 
are robust to biases; the second one is the correct for biases. For someone interested 
in the epidemiological dynamics of infectious diseases, in their seasonality of 
recurrence over multiyear periods, it is a fact that bias would largely affect the 
quantitative characteristics of such dynamics such as average incidences or amplitudes. 
However, it is as much a fact that biases will have only a very limited impact on 
qualitative features of the dynamics such as periodicity of epidemic peak recurrence 
(period) or the timing of these peaks (phase) (see Fig.  11.4 ).  

 There are a number of powerful statistical methods that allow to extract the 
qualitative statistics of the time series and to perform a number of scientifi c analyses 
which are robust to biases. The next section reviews some of them. The second 
method to deal with bias is to correct it or, more correctly, to account for it. This 
implies having some source of information on the potential biases. It can come from 
the surveillance recommendations, such as WHO’s criteria for diagnosis, or from 
other complementary studies performed at much smaller scales such as sentinel 
surveillance. By taking advantage of the fl exibility of mathematical models, as 
exposed in the previous section, one can incorporate these information into his/her 
model, thus explicitly accounting for possible major historical shift in diagnosis 
methods or any other source of bias. Even more powerful than that can be the 
situation where we suspect the specifi c bias to exist but we are not able to assess it 
by any means. In the previous section, we emphasized the powerfulness of mathe-
matical modeling interfaced with real data within the maximum-likelihood frame-
work. We indeed explained how parameters with clear biological meaning could be 
estimated by using the information that can be measured on variables. We can thus 
adopt this very approach here, and the bias, which would be one parameter of our 
model, could be estimated by maximum likelihood exactly the same way as any 
other parameter. This has been successfully applied recently on cholera in the state 
of Matlab in India. Since the pioneering work of John Snow (see introduction), it 
has been known that cholera can be transmitted either directly from person to  person 

  Fig. 11.4    The anatomy of a 
periodic time series can be 
summarized by four statistics. 
Two of them are quantitative 
(the average M and the 
amplitude A) and are 
potentially affected by biases 
in the reporting rate. Two are 
qualitative (the period T and 
the phase φ) and robust to 
biases in the reporting rate       
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or indirectly through contaminated water. However, the respective weights of both 
routes of transmission remain lively debated, and a central topic of the debate has to 
do with the possibility of asymptomatic carriers who would not be counted in the 
incidence but yet who would play an important role in the incidence’s dynamics. 
Using a mathematical model allowing the possibility of such asymptomatic carriers 
to analyze long-term cholera incidence time series within a maximum likelihood, 
Aaron King and his colleagues managed to demonstrate the existence of such 
asymptomatic carriers and to estimate their prevalence in the population (King et al. 
 2008 ). In the next section, we briefl y review a number of studies that have been 
particularly infl uential to the scientifi c use of surveillance data, despite all the 
acknowledged quality issues.  

11.5     Major Studies Based on Infectious Disease 
Surveillance Data 

 Surveillance records of major infectious diseases started at the end of the nineteenth 
century, but it is not before the early 2000s that their analysis with the approach 
exposed above really started. The work of Bryan Grenfell on measles and other 
childhood diseases in England and Wales was particularly infl uential. The extremely 
simple life cycle (high force of infection and permanent immunity after recovery) of 
childhood diseases makes them particularly amenable to analysis with mathematical 
models and parameter estimation with maximum likelihood. These diseases also 
often display specifi c symptoms (e.g., measles, pertussis, chicken pox), rendering 
their symptom-based diagnosis reliable, and they often display high incidences – at 
least in the pre-vaccine eras – and regular epidemics, easing the study of their 
dynamics. In addition to these surveillance data sets of exceptional quality and 
spatiotemporal coverage available in England and Wales, demographic information 
of similar quality and resolution are also available. Vaccine coverage is also avail-
able most of the time in the vaccine era. The study of more than six decades of such 
data allowed an unprecedented opportunity to investigate the role of demographic 
transitions and vaccination on the epidemiological dynamics of infectious diseases 
and to understand the laws that govern their diffusion in space. It has thus been 
shown that the recurrence of childhood diseases (annual, biannual, triannual, or any 
other multi-annual regimen), however complicated it may be, can be effi ciently 
predicted simply from birth rate and vaccine coverage (Earn et al.  2000 ; Grenfell 
et al.  2002 ; Bjørnstad et al.  2002 ). The study of the timing of epidemics of measles 
in different localities of England and Wales, both before and after vaccine policies, 
revealed the mechanism of spatial diffusion where large cities lead the nationwide 
epidemiology according to a gravity-like process in which distances and population 
size are the main two predictors of spatial dynamics (Grenfell et al.  2001 ;    Xia et al. 
 2004 ). This mechanism has been later on successfully verifi ed on a variety of infectious 
diseases, childhood (pertussis), and others (infl uenza, Viboud et al.  2006 ). 
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 Besides geography, demography, and vaccination, there have been investigations 
on the role of other mechanisms in driving infectious epidemiological dynamics. 
Among the most notable are climatic, socioeconomic, and immunological factors. 
Investigations on the putative impact of climatic conditions on the transmission of 
infectious diseases have been triggered by the general growing concern about global 
climate changes (IPCC, International Panel on Climate Change). 

 Climatic conditions are expected to affect disease transmission for different 
reasons. For diseases transmitted directly through aerial droplets, it is plausible that 
the survival of viral particles in these droplets and thus their infectiousness depend 
on climatic conditions such as humidity or temperature, as demonstrated for 
infl uenza virus both experimentally (Shaman and Kohn  2009 ) and empirically 
(Alonso et al.  2007 ; Shaman et al.  2010 ). The effect of climatic conditions is 
however expected to be even stronger on diseases that are either environmentally 
transmitted such as cholera or transmitted by vectors such as malaria or dengue 
fever. Cholera is a disease caused by the bacteria  Vibrio cholerae . This bacterium 
naturally thrives on the surface of estuarine copepods with which it maintains a 
symbiotic interaction. Modifi cations in sea water temperature can stimulate the 
development of resources on which the cholera-carrying copepods feed, thus stimu-
lating its development, which rises to several order of magnitude the probability of 
the copepods and the  V. cholerae  they carry to get into contact with human beings. 
Once such a contact has happened, an epidemic can start and spread in a human 
population at an incredible pace. In these conditions, we expect cholera epidemics 
from surveillance data to be synchronized with sea surface temperature that can be 
easily estimated from satellite images. This has been verifi ed not only on the sea-
sonal scale but also on the longer periods (3 to 7 years) of the El Niño Southern 
Oscillation (ENSO) (Pascual et al.  2000 ,  2002 ). Vector-borne diseases are the 
other group of diseases for which climatic factors are expected to infl uence the epi-
demiological dynamics. Indeed, most vector animal species, particularly the arthro-
pod ones, have a population dynamics extremely dependent on climatic conditions 
for metabolic reasons (temperature) or for physical reason (rainfalls creating breeding 
niches). The role of temperature and rainfall on the development rate of dengue and 
malaria vectors has been demonstrated in the laboratory, and presence/absence fi eld 
data tend to confi rm this (Craig et al.  1999 ). However, this has never been precisely 
quantifi ed in the fi eld so far, for what concerns the timing of epidemics in one season 
and its severity. 

 The long underestimated effects of behavioral and socioeconomic factor effects 
on the epidemiological dynamics of major infectious diseases become more and 
more documented. Soper in 1929 (Soper  1929 ) was one of the very fi rst to recognize 
the strong forcing that the alternation of vacations and school terms could have on 
the seasonality of measles among English children. This has been largely confi rmed 
in recent studies where the precise school calendar can be included in the model 
(Keeling and Grenfell  1997 ). The structure of social contact is also a strong deter-
minant of disease dynamics (Keeling and Eames  2005 ). Age structure is the most 
obvious one (Mossong et al.  2008 ) and has been recently put forward to explain the 
mysterious reemergence of pertussis in high-coverage vaccinated countries such as 
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Denmark (Rohani et al.  2010 ). Sexually transmitted diseases are the class of diseases 
where such social structure is intuitively expected to play the most important role. 
It is a well-known fact now that diseases such as HIV/AIDS have a totally different 
epidemiology in the homosexual and the heterosexual populations, among other 
factors (Keeling and Rohani  2008 ). The precise nature of the contact network here 
plays a key role (Eames and Keeling  2002 ). On the more economic side, it is only 
recently that links between economic welfare and infectious disease epidemiology 
have started to be investigated, with very promising possibilities (Bonds and Rohani 
 2009 ; Bonds et al.  2009 ). 

 The picture would not be complete without mentioning the immunological factors. 
This concerns diseases caused by pathogens that alternate (e.g., dengue serotypes) 
or succeed to each other (e.g., infl uenza strains) in time.    A number of organisms 
causing infectious diseases have this particularity that the time scales of their mole-
cular evolution and of their epidemiological dynamics are of the same order (Earn 
et al.  2002 ), allowing to study the interactions between these two sorts of mecha-
nisms (Grenfell et al.  2004 ; Bedford et al.  2010 ). 

 The studies briefl y reviewed above revealed the richness of mechanisms that can 
explain the epidemiological dynamics of infectious diseases. These can be immuno-
logical, climatic, environmental, behavioral, socio-economical, demographic, etc. 
Interestingly, it has also been proposed that infectious diseases can affect each  others’ 
dynamics, and this has been shown on childhood measles and whooping cough 
which infect the same cohort of children. Any child having one of these diseases is 
usually kept at home, which makes him/her unavailable for infection by the other 
disease, thus leading to some interference between the two diseases’ dynamics 
(Rohani et al.  1998 ,  2003 ). All these studies that we presented in this section have 
thus  contributed to some of the major changes in the history of infectious disease 
 epidemiology. None of them would have been possible without the availability of 
long-term time series of surveillance notifi cations. The qualities of these data are 
unequal, but their strength resides in their huge quantity, allowing comparative and 
long-term studies that unravel singular mechanism that could not be detected 
 otherwise. The availability of such data opens totally unexplored fi elds in epidemiol-
ogy, and this is a paradigm shift that can be compared to the one that happened in 
astronomy with the use of the very fi rst telescopes, which were of terrible quality too! 
It is likely that the transmission of diseases is multifactorial. One of the major chal-
lenges in the future would be to quantify the respective weights of the different fac-
tors that can affect infectious disease transmission. Indeed, a number of debates 
currently revolve around the major drivers of infectious disease dynamics. This is the 
case, for example, for dengue in Thailand where demographic factors have been put 
forward by some researchers (Cummings et al.  2004 ), whereas climatic factors have 
been claimed to play the most important role (Cazelles et al.  2005 ) and immunologi-
cal interactions between the four serotypes by other groups (Adams et al.  2006 ; 
Wearing and Rohani  2006 ). Similarly, the respective importance of demographic 
(Viboud et al.  2006 ), climatic (Shaman et al.  2010 ), and immunological factors 
(Bedford et al.  2010 ) on the epidemiological dynamics of seasonal human infl uenza 
is still largely unresolved. Even measles, the paradigmatic model on the infl uence of 
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demographic factors on epidemiological dynamics, seems also to be affected, to 
some extent, by climatic factors (Ferrari et al.  2008 ). Model confrontations in the 
maximum-likelihood framework and comparative analyses will be the ways to resolve 
these debates. Hence, there is a need for more and more historical surveillance data.  

11.6     The Value of and Threats on Public Health Data 

 It is a fact that infectious disease data suffer from a number of quality issues. 
However, they also contain a unique source of valuable information that could not 
be generated by any other means. We hope that the above paragraph has convinced 
the reader that despite their limitations, surveillance data, when analyzed with 
appropriate mathematical and statistical tools, can lead to results of major signifi cance, 
both from the basic scientifi c and the applied public health perspectives. 

 Scientifi c data are expensive to generate. Look at any research project and you 
will see that the largest chunk of its budget is devoted to data collection. And yet, 
most of the time, these data are analyzed only once, in the very study that did collect 
them. These data are stored for a while, and soon, the location of their repository 
is forgotten, and eventually the data are just lost. A foundation of modern science is 
repeatability, including repeatability of data analysis. This latter clearly cannot be 
ensured any more if the data disappear. Furthermore, there is often much more 
information in a data set than the information used for the purpose of their collection. 
But this information cannot be used if the data are not made available to other 
researchers with other research inquiries (   Bolker  2005 ). 

 The recognition of these issues has recently encouraged researchers to make 
their data more available. It has been now 30 years that publication of study based 
on the analysis of molecular sequences requires the publication of original data on 
the open-access electronic database GenBank (  www.ncbi.nlm.nih.gov/genbank    ). 
Scientifi c research founders now more and more require the produced original data 
to be made freely available to the rest of the scientifi c community. It also becomes 
common practice for international scientifi c journals to require that the data should 
be made available from electronic repositories such as Dryad (  datadryad.org    ). 

 These changes in the way to communicate and share scientifi c data and results 
are timely and will certainly improve the situation in the future. Historical data that 
have been collected over long time periods, such as public health surveillance data, 
all share the same characteristics: (1) they are unique and cannot be collected again 
(contrary to experimental data for which the experiments can always be rerun); 
(2) they represent an enormous amount of valuable information that have been 
rarely really analyzed; (3) they most of the time exist only in paper format, and their 
number of copies is often low. The studies that have been presented in the previous 
paragraph were carried out on a very small number of data sets: measles and whooping 
cough in England and Wales, dengue in Thailand, measles in Niger, and infl uenza in 
the USA. This is only the tip of the iceberg of such existing data. This is also the 
very tiny proportion of such data are currently available in electronic format. Much 
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more of such data exist all around the world in a number of different health 
centers, hospitals, or ministries. The vast majority of them unfortunately exist only 
on paper format, in one unique copy, stored in some highly vulnerable place 
(Fig.  11.5 ).  

 These data are historical data spanning several decades, which means that if 
these data were to disappear, there would be no mean to regenerate them as we 
could do for classic experimental data. That would thus represent a huge loss for the 
scientifi c community, as well as for the public and international health. There is thus 
an urgent need to secure such data from destruction that can happen at any time by 
offi ce relocation, fl ooding, fi re, etc.  

11.7     Data Rescuing Programs in Southeast 
Asia and Challenges 

 The Vaccine Modeling Initiative (VMI,   www.vaccinemodeling.org    ) is a Bill & 
Melinda Gates Foundation-funded international project, the aim of which is to 
strengthen the links between mathematical and computational models and public 

  Fig. 11.5    Data collection on the fi eld in Laos. ( a ) Particularly unordered public health data threatened 
by destruction. ( b ) A typical communal health center in rural Laos (Savannakhet province). 
( c ) Public health record scanning. ( d ) An exceptionally well-ordered and well-preserved ensemble 
of public health data (Photos: Marc Choisy)       
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health data. To this purpose, one of its activities consists in creating open-access 
electronic infectious disease surveillance databases, in the very same spirit as what 
has been done for molecular sequences with GenBank since the early 1980s. The 
fi rst such database that has been created is the Tycho database (  www.tycho.pitt.
edu    ), named after Tycho Brahe (see introduction). This open-access electronic data-
base is the result of digitization and manual double-blinded entering of the US 
weekly reports on infectious diseases. It represents a total of 6300 weekly reports 
for 55 infectious diseases from 1888 to present with data spatially aggregated by 
states (50) and cities and towns (1,500).    In total, this database contains 100 million 
cases and 4 million deaths, and it took 90-man-year full-time employment to manually 
enter this database (Van Panhuis et al.  2013 ). 

 A similar program of the VMI is currently undertaken in Southeast Asia, focusing 
primarily on gathering dengue syndromic monthly surveillance notifi cations. As of 
today, it contains monthly data (since 1997) aggregated by provinces (189) for 
Malaysia, Thailand, Vietnam, Cambodia, and Laos, covering a population of 209 
million people on 1.6 million km 2  (see Fig.  11.6 ).  

 The buildup of such an international database was eased by the fact that these 
province-aggregated data were already centralized at the level of each country 

  Fig. 11.6    Dengue database in Southeast Asia. Syndromic surveillance notifi cations have been 
collected and aggregated by month and province (189) for Malaysia, Thailand, Vietnam, Cambodia, 
and Laos for the last 15 years. This represents a total population size of 208 million individuals on 
an area of 1.6 million km 2        
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(usually the ministries of health). Disaggregated raw data are unfortunately not 
 centralized, and their collection thus demands an important amount of fi eld work. 

 In most of the countries of the region, public health surveillance networks are 
hierarchically organized from communal health centers to upper levels, districts, 
and provinces, up to the ministry of health (Fig.  11.7 ).  

 Being able to collect data from each of these levels will allow to assess the 
quality of data transfer along the national surveillance network, identify major 
weaknesses, and propose solutions of improvement. A fi rst limitation is related to 
the lack of homogeneity in notifi cation criteria and human resources, not only 
between countries but also within countries. The World Health Organization have 
developed electronic-based surveillance systems that are consistent between coun-
tries (HMN  2008 ), but the lack of equipment, internet access, and computer training 
for the medical staff unfortunately makes the use of such systems anecdotal in 
practice. The second major limitation pertains to the quality of information fl ow 
along the surveillance network. At each level of the network, information is 
received from the level below, processed and aggregated by time and space before 
being transferred to the next level. All this necessarily implies loss of information. 

  Fig. 11.7    A typical infectious disease surveillance network as implemented in Laos. Numbers in 
brackets refer to the numbers of health offi ces at each level.  Arrows  show the fl ow of information 
from the lower levels to the higher ones, up to the ministry of health (NCLE, National Center for 
Laboratory and Epidemiology) (note that all intermediate levels both gather data directly and 
aggregate data from lower levels before transmitting the total to the upper level)       
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Moreover, this data processing and aggregation is mostly performed by hand with 
all the error sources that this involves. In the absence of quality check, errors accumu-
late and propagate along the network. In the most remote areas, it may also happen 
that communication between levels is interrupted for various hazard sources. 

 Collecting disaggregated data at all the levels of the surveillance network will 
thus allow to identify the major bottleneck in information transfers and the major 
sources of data quality corruption. Only data aggregated by the province is main-
tained over a long term at the highest national level (ministry of health). At all other 
levels, after having processed the data from lower levels and transferred it to the 
higher level, the recommendation is to keep it for a minimum of 5 years. There are 
naturally no incentives to destroy the data after 5 years, but, in practice, because of 
storage space shortage, it is very rare to fi nd disaggregated data older than 5 years. 
This represents an enormous loss of scientifi c and public health information. Only 
an electronic surveillance system would allow to cope with most of the issues raised 
in this section. By automating aggregation calculation and data transfer, it would 
reduce errors due to these two processes to its minimum. Furthermore, backup 
drives at each level would ensure the long-term preservation of raw data without 
requiring too much physical space. Backup in each health center of the network 
would also ensure that data are constantly saved in several different places. If one of 
the centers were to disappear, the data would be preserved in any upper level or 
could be reconstructed from any lower level.  

11.8     Conclusion 

 Dengue is the fi rst human arbovirus in the world in terms of affected population and 
population at risk (3.5 billion people, 55 % of the world population is estimated to 
be at risk by WHO, Beatty et al.  2007 ). It is primarily affecting the intertropical 
regions of the world, with a special high and ancient burden in Southeast Asia, and 
it has become a major international public health issue due to an increase in its 
worldwide distribution (Gibbons and Vaughn  2002 ; Guzman and Kouri  2002 ). In 
the absence of vaccine, the sole mean of dengue prevention is through vector 
 control. A live-attenuated, tetravalent, chimeric yellow fever dengue vaccine has 
been in development for many years, and its commercial availability is announced 
for 2016 (phase III trials started in December 2010) (Guy et al.  2011 ). Yet, the pub-
lic health services still have no clue of how to implement the best vaccine policy. It 
thus becomes timely to start thinking about effi cient strategies that will involve both 
vaccine use and vector control (WHO-VMI Dengue Vaccine Modeling Group 
 2012 ). As reminded earlier, experimentation is impossible in epidemiology for 
obvious ethical reasons. Mathematical and computational modeling thus constitutes 
the only means we have to explore the effi ciency of various vaccine policy scenarios 
(Ferguson et al.  2005 ). However, such prospective explorations are possible only 
with realistic enough models, and this depends strongly on the data available for 
parameter fi tting. In the context of applying a vaccine policy to the Southeast Asia 
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region, a number of questions arise respective to the spatial dynamics of the disease 
at between-country level. Since the spatial dynamics of a disease at local scales 
largely determine its persistence at larger scales (Grenfell and Harwood  1997 ; 
Earn et al.  1998 ), it appears most important to understand its major drivers among 
demographic (population size and birth rate), climatic (affecting vector population 
dynamics), administrative (contact networks), and immunological (serotype inter-
action) factors (Racloz et al.  2012 ). Only historical surveillance data would 
allow to develop and fi t realistic enough models of practical use for the design of 
an optimal vaccine policy.     
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