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Abstract1

Mathematical models are frequently used to assess the impact of control in-2

terventions for Chlamydia trachomatis and other sexually transmitted infections3

(STIs). Modeling approaches that stratify the population by the number of sex4

partners often assume the transmission risk per partner to be constant. How-5

ever, sexual behavior data suggests that people with many partners share less6

sex acts per partner than people with fewer partners. This should lower the risk7

of transmission per partner for highly sexually active individuals and could have8

important epidemiological consequences for STI transmission. We devise a new9

epidemiological model that we fit to chlamydia prevalence data from Natsal-210

and CSF, two population-based probability sample surveys of sexual behavior in11

Britain and France. Compared to a standard model where the transmission risk12

per partner is constant, a model with realistic numbers of sex acts per partner13

provides a better fit to the data. Furthermore, the improved model provides ev-14

idence for strong assortative mixing among individuals with different numbers of15

sex partners. Our results suggest that all chlamydia infected individuals with one16

or more new heterosexual partners per year contribute significantly to ongoing17

transmission, underlining that control interventions should be aimed towards all18

sexually active young adults.19
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Introduction20

The spread of sexually transmitted infections (STIs) crucially depends on the number of21

sex partners and the number of sex acts within a sexual partnership. Empirical studies22

have shown that the number of sex partners within a given time period is a strong23

determinant for the spread of curable STIs such as Chlamydia trachomatis (Fenton et al.,24

2001; Sonnenberg et al., 2013; Althaus et al., 2012c) and Neisseria gonorrhoeae (Ison25

et al., 2013). However, the number of sex acts as an additional factor for transmission has26

not received as much attention. In particular, mathematical models of STI transmission27

that are frequently used in guiding public health policy decision making often assume28

the number of sex acts per partner to be constant and independent of the number of29

partners an individual has (Hethcote and Yorke, 1984; Anderson and May, 1991; Garnett30

and Anderson, 1993b; Garnett et al., 1999; Keeling and Rohani, 2008). Neglecting31

the number of sex acts per partner could lead to inaccurate estimates of the efficiency32

of public health interventions, for instance when predicting the impact of screening33

interventions on chlamydia spread.34

Theoretical studies have shown that taking into account the number of sex acts in35

models of STI transmission can dramatically alter the results (Kaplan, 1990; Røttingen36

and Garnett, 2002). An important aspect was illustrated in the study by Nordvik37

and Liljeros (2006), where they showed that it is not only the number of partners,38

but also the number of sex acts per partner, that is important for the transmission of39

an infection. Garnett and Anderson (1996) developed a generic framework to include40

the heterogeneity in the number of sex acts between individuals and showed that it41

can enhance the likelihood of persistence of STIs. Still, we lack a solid understanding42

of the relationship between the number of sex acts and the number of sex partners.43

Furthermore, it remains to be determined how this relationship can be appropriately44

integrated into mathematical models of STI transmission that then can be validated45

with data.46

The results of probability sample surveys of sexual behavior allow us to formulate47

some hypotheses on the relationship between the number of sex acts and the number48

of sex partners. Blower and Boe (1993) analyzed data from 1770 unmarried individuals49

aged 20–44 years collected in San Francisco (USA) from 1988–1989. They concluded that50

it may be most appropriate to see the number of sex acts as a ‘budget’ split between51

sex partners. Nordvik and Liljeros (2006) looked at the total number of sex acts in52

relation to the total number of sex partners based on data from 1150 individuals aged53

16–31 years collected in Sweden in 1988. The authors found that the total number of54

sex acts remains constant in individuals with higher numbers of sex partners (it even55

decreases in women). In principle, one can directly infer the relationship between sex56

acts and sex partners from sexual behavior surveys, but there remain potential biases57

due to the self-reported data. For example, it proves difficult to discriminate between58

protected and unprotected sex acts in such surveys. A better understanding of the59

quantitative relationship between the number of sex partners and the number of sex60

acts could provide useful insights into the epidemiology of STIs and their control.61

Another important aspect of taking the number of sex acts between sex partners into62

account is its effect on the topology of the sexual contact network. If the number of sex63

acts per sex partner is constant, each contact (edge) between susceptible and infected64

individuals (nodes) is weighted equally, i.e., has the same transmission probability. This65

is not the case if sex acts are explicitly accounted for (Moslonka-Lefebvre et al., 2012).66

However, network-based models usually require computationally-intensive simulations67
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Kamp et al. (2013), which is why mathematical models of STIs tend to adopt a simpler68

approach by stratifying the population into subgroups with varying levels of sexual69

activity (Hethcote and Yorke, 1984; Garnett and Anderson, 1993b; Garnett et al., 1999).70

These models are often referred to as ‘risk class models’, although the stratification is71

based on the partner change rate that does not necessarily correlate with risk. In models,72

the level of sexual mixing between individuals can vary from fully proportionate (to the73

number of sex partners individuals have) to completely assortative (individuals within74

a sexual activity or risk group mix only with themselves). While some studies based on75

sexual behavior data indicate a certain level of assortative mixing between individuals76

(Renton et al., 1995; Garnett and Anderson, 1993a; Garnett et al., 1996; Aral et al.,77

1999), the output of STI transmission models is often only consistent with close to78

proportionate (or random) mixing (Garnett et al., 1999; Althaus et al., 2012a). This79

inconsistency illustrates the challenge in estimating the degree of sexual mixing, and80

we show that considering the number of sex acts per sex partner in models of STI81

transmission sheds new light on this question.82

Our goal is to gain a more detailed picture of the relationship between the number of83

heterosexual sex acts and the number of heterosexual sex partners and study its effect on84

the transmission of chlamydia, the most prevalent bacterial STI. To this end, we make85

use of two datasets of sexual behavior: the British National Survey of Sexual Attitudes86

and Lifestyles (Natsal-2) (Johnson et al., 2001), and the ‘Contexte de la Sexualité en87

France’ (CSF 2006) (Bajos and Bozon, 2006, 2008). First, we directly infer the relation-88

ship between the number of heterosexual sex acts and the number of heterosexual sex89

partners from Natsal-2. We then fit a novel epidemiological model of STI transmission90

to chlamydia prevalence data of both datasets and indirectly infer epidemiological pa-91

rameters as well as the relationship between the number of heterosexual sex acts and92

heterosexual sex partners. Both methods support the notion that the number of hetero-93

sexual sex acts per partner decreases with higher number of heterosexual sex partners.94

This is also consistent with a high level of assortative mixing between individuals with95

similar number of sex partners. Lastly, we show that taking realistic numbers of sex acts96

into account when modeling the heterosexual transmission dynamics of chlamydia has97

a crucial effect on the projected impact of control interventions.98

Methods99

Data100

Natsal-2101

Natsal-2 is a population-based probability sample survey of sexual attitudes and lifestyles102

conducted in Britain in 1999-2001 (Johnson et al., 2001). The sample consists of 11,161103

women and men aged 16–44 years. Urine samples for ligase chain reaction (LCR) testing104

for chlamydia infection are available for a subset of 3569 sexually active respondents105

aged 18–44 years (Fenton et al., 2001). We use the following variables: number of new106

heterosexual sex partners in the last year, number of occasions of heterosexual sex in107

last 4 weeks, chlamydia test result from urine sample. Individual weights are used for108

all variables to adjust for unequal selection probabilities and to correct for the age and109

gender profile in the survey population. The full dataset is available from the UK Data110

Archive at the University of Essex (http://data-archive.ac.uk).111
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CSF112

‘Contexte de la Sexualité en France’ (CSF 2006) is a survey conducted in France among113

12,364 randomly chosen individuals aged 18–69 years (Bajos and Bozon, 2006, 2008).114

Urine samples testing for chlamydia infection are available for a subset of 7407 sexually115

active respondents. The two variables we used are the number of new heterosexual sex116

partners in the last year and the chlamydia test result from urine sample (see Supple-117

mental Files).118

Sex acts and sex partners119

We stratify the population by the reported number of new heterosexual partners in the120

last year which results in n different sexual activity classes with ci sex partners. The121

average heterosexual activity of each individual during one year is assumed to be reflected122

in the reported number of heterosexual sex acts during the last 4 weeks. For simplicity,123

and in order to increase sample size, we pool data of women and men together.124

The reported numbers of sex acts during the last 4 weeks are highly dispersed125

(Fig. 1A). Therefore, we assume that the observed number of sex acts during the last126

4 weeks (Z) for a given individual with ci new heterosexual partners during the last127

year follows a negative binomial distribution. This distribution is frequently used to128

describe overdispersed data in biology and epidemiology (Lloyd-Smith, 2007; Hamilton129

et al., 2008). In the context of data on the number of sex acts, it can be interpreted130

as a process of sequential Bernoulli trials to reach ‘sexual satisfaction’ with the param-131

eters (k,p): for each of Z sex acts there is a probability p that it will not be sexually132

satisfying and individuals engage in new sex acts until satisfaction has been reached in133

k of them. The negative binomial distribution can also be interpreted as a mixture of134

Poisson distributions where the rates at which different individuals have sex are drawn135

from a gamma distribution with shape parameter k and scale parameter p/(1−p). More136

generally, a single Poisson distribution is obtained for k →∞ and the negative binomial137

distribution is reduced to a geometric distribution for k = 1.138

We assume that the mean of the negative binomial distribution is given by the139

following functional relationship:140

mi = d1 + d2 c
d3
i , (1)

where mi and ci are the average number of sex acts and the number of sex partners for141

individuals of sexual activity class i, respectively. mi can then be scaled to obtain the142

expected number of heterosexual sex acts per year (Mi).143

We construct a series of nested models by fixing some of the parameters to specific144

values. For example, if d2 = 0, the total number of sex acts does not increase with145

higher numbers of sex partners. For d3 = 1, the number of sex acts changes linearly146

with higher numbers of partners. The nested models then allow to perform hypothesis147

testing about different functional relationships between the number of sex acts and sex148

partners.149

Epidemiological model150

We assume the population to be stratified into n different sexual activity classes xi151

with ci new heterosexual partners per year (Hethcote and Yorke, 1984; Garnett and152

Anderson, 1993b). xi denotes the proportion of individuals in sexual activity class i. On153

average, individuals change their sexual activity after one year, and are proportionally154
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redistributed among all sexual activity classes. For simplicity, we assume that sexual155

activity and the natural history and transmission of the infection are the same in women156

and men. If yi is the proportion of infected individuals in sexual activity class i, an SIS157

(susceptible-infected-susceptible) model (i.e., with no immunity) can then be written as158

follows:159

dyi
dt

= µ
n∑
j=1

xjyj + (1− yi)ci
n∑
j=1

bijρijyj − (γ + µ)yi, (2)

where 1/γ and 1/µ denote the average duration of infection and the average time spent160

in one sexual activity class, respectively. ρij represents the elements of the mixing matrix161

that, following Garnett et al. (1999), can be defined as162

ρij = εδij + (1− ε) cjxj∑n
l=1 clxl

, (3)

where δij denotes the Kronecker delta (it is equal to 1 if i = j and to 0 otherwise).163

Mixing can be varied between proportionate (ε = 0) and fully assortative (ε = 1).164

The per partnership transmission probability bij can be considered as a Bernoulli165

process of repeated transmission probabilities per sex act:166

bij = 1− (1− β)aij (4)

where β denotes the transmission probability per sex act and aij the number of sex acts167

in a partnership between an individual of sexual activity class i and j. To construct the168

matrix aij, we use the following algorithm to distribute the number of sex acts between169

partners:170

1. Define si = Mi

ci
as the average number of sex acts per partner for an individual of171

sexual activity class i.172

2. Set i = n, i.e., start distributing the number of sex acts from individuals of the173

highest sexual activity class.174

3. The number of sex acts from an individual of sexual activity class i will be shared175

with individuals of the same and lower sexual activity classes j = [1, i]. Hence, we176

distribute the number of sex acts si proportional to the probability of a contact177

between an individual of class i and class j (ρij) and to what the partners are178

willing to share (sj).179

4. The number of sex acts in individuals of sexual activity class j = [1, i] that remain180

to be shared (sj) need to be updated to only those sex acts that have not been181

shared with individuals of sexual activity class i or higher.182

5. If i > 1, set i = i− 1 and go to step 3. Otherwise, stop.183

We calculate the basic reproduction number, R0, for a given sexual activity class as184

follows:
ci

∑n
j=1(bijρij)

γ
. R0 for the entire population is calculated using the next generation185

method (Diekmann et al., 1990; Diekmann and Heesterbeek, 2000). An overview of all186

parameters and variables to describe the epidemiological model as well as the sexual187

behavior is given in Table 1.188
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Table 1: Parameters and variables used to describe the sexual behavior and the epidemiolog-
ical model.

Notation Description
n Number of host classes with different sexual activity
ci Number of new heterosexual sex partners in the last year for individuals of host class i
mi Average number of heterosexual sex in the last 4 weeks for individuals of host class i
Mi Average number of heterosexual sex in the last year for individuals of host class i

d1, d2, d3 Parameters describing the functional relationship between ci and mi

xi Proportion of the host population in sexual activity class i
Xi Number of individuals in sexual activity class i
yi Proportion of infected individuals in sexual activity class i
µ Rate at which individuals change their sexual activity
γ Recovery rate of the infection
ρij Mixing matrix between individuals of sexual activity classes i and j
ε Sexual mixing coefficient (assortative index)
δij Kronecker delta (a function equal to 1 if i = j, and to 0 otherwise)
si Average number of sex acts per sex partner for an individual of host class i (Mi

ci
)

aij Number of sex acts in a partnership between individuals of sexual activity classes i and j
β Transmission probability per sex act
bij Transmission probability per partnership between individuals of sexual activity classes i and j

Maximum likelihood estimation189

Direct method190

We estimate the parameters d1, d2 and d3 that describe the functional relationship be-191

tween the number of sex acts and sex partners (equation 1) and the dispersion parameter192

k from the negative binomial distribution using a maximum likelihood approach and the193

mle2 function from the package bbmle (Bolker, 2008) for the R software environment194

for statistical computing (R Development Core Team, 2009).195

Indirect method196

We fit the epidemiological model to chlamydia prevalence data to obtain maximum197

likelihood estimates of behavioral and/or infection parameters (Bolker, 2008). Given198

a model-predicted prevalence yi for sexual activity class i, the log-likelihood to find ki199

positive tests in a sample of Xi individuals over all n sexual activity classes is200

L(β, γ, ε, d1, d2, d3) =
n∑
i=1

(
log

(
Xi

ki

)
+ ki log yi + (Xi − ki) log(1− yi)

)
. (5)

We obtain the model predicted prevalences for each sexual activity class, yi, by201

numerically simulating equation 2 to its steady-state using the function ode from the R202

package deSolve (Soetaert et al., 2010). The parameter inference was performed using203

the function mle2 from the package bbmle (Bolker, 2008). We first used the minimization204

algorithm by Nelder and Mead (1965) that is very robust in finding local optima. For205

those fits where different starting values of the parameters resulted in multiple optima,206

we decided to use the method SANN. SANN is a variant of simulated annealing (Bélisle,207

1992) and usually performs better on rough likelihood surfaces at the cost of being208

computationally expensive.209
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Results210

Sex acts and sex partners (direct method)211

The reported numbers of heterosexual sex acts during the last 4 weeks in Natsal-2 show212

an increasing trend for higher number of new heterosexual partners during the last year213

(Fig. 1A). Fitting a series of nested models to the data suggests that a linear relationship214

between the number of sex acts, mi, and the number of sex partners, ci, describes the215

data best (Table 2 and Fig. 1B, solid line). The model where the number of sex acts216

for individuals with different numbers of sex partners is constant also fits the data217

well (Fig. 1B, dashed line). In contrast, the commonly used assumption where the total218

number of sex acts is strictly proportional to the number of sex partners is not consistent219

with the data (Fig. 1B, dotted line). We also fit an exponential relationship between the220

number of sex acts and sex partners (as suggested by Garnett and Anderson (1996)) to221

the data, but this resulted in a poorer fit (AIC = 17380.1) compared to the models in222

Table 2.223
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Figure 1: Number of heterosexual sex acts during the last 4 weeks as a function of the
number of new heterosexual partners during the last year. (A) Boxplot of the reported data
in Natsal-2 (n = 2824). The number of sex acts are positively correlated with the number of
sex partners (Pearson’s r = 0.07; p < 10−3). (B) Functional relationship between the number
of sex acts and the number of sex partners together with the means and standard errors of
the reported data. The best fit model (Linear, solid line) is shown together with the models
assuming the total number of sex acts (Constant, dashed line) or the number of sex acts per
partner (Proportional, dotted line) to be constant.

Parameter inference (indirect method)224

We perform two series of model fitting to indirectly infer parameters from chlamydia225

prevalence data. First, we only consider epidemiological parameters: the per sex act226

transmission probability β, the infectious duration 1/γ and the sexual mixing coefficient227

ε. Second, we focus on inferring the shape of the functional relationship between the228

number of sex acts and the number of sex partners (equation 1) and estimate d1, d2, d3229

and ε. For the second approach, we assume that β and γ are fixed and informed by the230

literature. The rationale for choosing two separate approaches is that estimating all six231

parameters simultaneously would result in overfitting of the model.232
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Table 2: Maximum likelihood estimates of the functional relationship between the number
of sex acts and the number of sex partners (direct method). Fixed parameters are given in
squared brackets and estimates are shown together with 95% confidence intervals. The six
different models were sorted in increasing order of their AIC. Only models whose AIC were
within 10 from the best fit (Linear) model are shown together with the classical model where
the number of sex acts increases strictly proportional to the number of sex partners. Based on
likelihood ratio tests, the linear model is superior to the constant and full model (p < 0.05).

Model Parameters No. of free -2LogLik ∆AIC
d1 d2 d3 k parameters

Linear 6.64 (6.20, 7.09) 0.17 (0.01, 0.33) [1.00] 0.65 (0.61, 0.69) 3 16821.9 0.0
Full 6.77 (6.29, 7.25) 0.07 (-0.14, 0.28) 1.34 (0.31, 2.36) 0.65 (0.61, 0.69) 4 16821.4 1.6
Exponent 5.77 (5.40, 6.15) [1.00] 0.39 (0.13, 0.65) 0.65 (0.61, 0.69) 3 16824.3 2.4
No intercept [0.00] 6.81 (6.42, 7.20) 0.06 (-0.01, 0.13) 0.65 (0.61, 0.69) 3 16825.6 3.7
Constant 7.01 (6.67, 7.34) [0.00] – 0.65 (0.61, 0.69) 2 16828.4 4.6
Proportional [0.00] 5.08 (4.81, 5.35) [1.00] 0.54 (0.51, 0.57) 2 17296.0 472.2

Epidemiological parameters233

We fit two models to the Natsal-2 and CSF chlamydia prevalence data to estimate the234

epidemiological parameters. In one model, the average number of sex acts for individuals235

with a specific number of sex partners is given by the best fit model from the direct236

method (Linear). In the other model, we use the classical assumption where the number237

of sex acts increases strictly proportional with the number of sex partners. Both models238

fit the data well (Fig. 2) but vary in their estimates of the sexual mixing coefficient (Table239

3). While the proportional model suggests that sexual mixing is proportionate (ε = 0),240

the linear model estimates the mixing coefficient to be more assortative and significantly241

different from zero (ε = 0.83 (95% CI: 0.46–0.96) and ε = 0.53 (95% CI: 0.38–0.68) for242

Natsal-2 and CSF, respectively). The estimated recovery rates are consistent with an243

average infectious duration of about 1 year (Althaus et al., 2010; Price et al., 2013;244

Davies et al., 2014). The per sex act transmission probabilities for the linear model245

are somewhat lower than previous estimates (9.5%, interquartile range: 6.0%–16.7%)246

(Althaus et al., 2012b). This could be explained by the fact that the transmission247

probabilities in our model include protected and unprotected sexual intercourse. In248

contrast, the estimates of the per sex act transmission probability for the proportional249

model are very low, indicating that the number of sex acts are not realistically taken250

into account.251

Table 3: Maximum likelihood estimates of epidemiological parameters. The relationship
between the number of sex acts and the number of sex partners is either based on the best
fit model from the direct method (Linear) or the classical assumption where the number of
sex acts increases strictly Proportional to the number of sex partners. Estimates are shown
together with 95% confidence intervals.

Model Data Parameters No. of free -2LogLik AIC
β 1/γ ε parameters

Linear Natsal-2 3.0% (1.9%, 4.1%) 1.12 y (0.83, 1.42) 0.83 (0.46, 0.96) 3 39.3 45.3
Linear CSF 3.4% (NA, NA) 0.96 y (NA, NA) 0.53 (0.38, 0.68) 3 85.2 91.2
Proportional Natsal-2 0.7% (0.3%, 1.1%) 1.16 y (0.44, 1.88) 0.00 (0.00, 0.00) 3 41.0 47.0
Proportional CSF 0.4% (0.2%, 0.5%) 1.04 y (0.45, 1.63) 0.00 (0.00, 0.00) 3 105.7 111.7
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Figure 2: Chlamydia prevalence and model fits. For both datasets, the model where the total
number of sex acts increases linearly with the number of sex partners (black squares) provides
a better fit to the data compared to the classical model where the number of sex acts increases
strictly proportional with the number of sex partners (gray diamonds). Data points (circles)
are shown together with the 95% binomial proportion confidence intervals.

Functional relationship252

We infer the functional relationship of the number of sex acts and sex partners by fitting253

the model to the Natsal-2 and CSF chlamydia prevalence data simultaneously (Table 4).254

To this end, we set the per sex act transmission probability and the infectious duration255

to values similar as estimated in Table 3 (β = 3% and 1/γ = 1 year). We find that256

the model where the number of sex acts does not increase with the number of partners257

(Constant) describes the data best. As in section , we again find evidence for assortative258

mixing (ε = 0.60, 95% CI: 0.28–0.85). The estimates of d2 or d3 are close to zero for the259

model with no intercept, the linear model and the full model. This indicates that the260

number of sex acts does not substantially increase with higher numbers of partners. The261

proportional model clearly provides the worst fit to the data, and is the only model that262

suggests random sexual mixing. Interestingly, the number of estimated sex acts in the263

last four weeks is slightly higher than the estimate from the direct method (10.6 vs. 7.0264

for the constant model, respectively). This could either reflect an under-estimation of265

the per sex transmission probability (set to β = 3%) or an under-reporting of sex acts266

in Natsal-2.267

Overall, our indirect method to infer the functional relationship between the number268

of sex acts and sex partners corroborates the results from the direct method. Models269

where the number of sex acts is constant or shows a slight linear increase with the270

number of sex partners provide the best and most parsimonious fit to the data. In271

contrast, the classical assumption of a strict proportionality between the total number272

of sex acts and the number of sex partners is clearly at odds with the data.273
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Table 4: Maximum likelihood estimates of the functional relationship between the number of
sex acts and sex partners (indirect method). Fixed parameters are given in squared brackets
and estimates are shown together with 95% confidence intervals. The five different models are
sorted in increasing order of their AIC. Likelihood ratio tests show that the constant model is
superior to all models with more parameters. The linear and no intercept model are favored
over the full and proportional model. The models are fitted with initial parameter values from
Table 2 and ε = 0.5.

Model Parameters No. of free -2LogLik AIC
d1 d2 d3 ε parameters

Constant 10.6 (8.54, 12.9) [0.0] [1.0] 0.60 (0.28, 0.85) 2 125.4 129.4
No Intercept [0.0] 10.4 (6.44, 15.2) 5.1e-4 (0, 1.46) 0.63 (0.16, 0.94) 3 125.4 131.5
Linear 10.0 (7.92, 12.4) 4.6e-3 (0, 0.15) [1.0] 0.69 (0.34, 0.89) 3 125.8 131.8
Full 6.72 (2.54, 12.8) 3.97 (0.59, 10.2) 1.1e-4 (0, 0.17) 0.59 (0.31, 0.82) 4 125.4 133.4
Proportional [0.0] 1.28 (1.23, 1.34) [1.0] 7.6e-3 (9.8e-5, 0.38) 2 153.2 157.2

Chlamydia transmission and control274

We now investigate the effects of different assumptions about the number of sex acts275

between partners on chlamydia transmission and control. We focus on the general pop-276

ulation in Britain (Natsal-2) and use the linear relationship for the number of sex acts277

as a function of sex partners from Table 2. This ‘realistic’ model is contrasted to the278

classical assumption where the number of sex acts increases strictly proportionally with279

the number of sex partners. For both models, we use the best-fit estimates of the per280

sex act transmission probability β, the recovery rate γ and the sexual mixing coefficient281

ε from Table 3.282

For the linear model, distributing the number of sex acts to sex partners of different283

sexual activity classes generates the sex acts matrix aij (Fig. 3A). From aij, we can then284

calculate the per partnership transmission probabilities bij (equation 4), which range285

from 19.8% to 93.9% for partnerships between individuals with 10 and one partner(s),286

respectively (Fig. 3B). In contrast, the proportional model with a constant number of287

sex acts per partner results in a single per partnership transmission probability of 37.0%,288

which is close to what has been estimated for mid-risk populations Althaus et al. (2012b).289

Differences in the per partnership transmission probability affect the transmission290

potential of individuals from different sexual activity classes, as reflected in the basic291

reproduction number (R0) of each sexual activity class. In the classical scenario, where292

the number of sex acts per partner is constant and the sexual mixing between partners is293

fully proportional, R0 is a linearly increasing function of the number of new heterosexual294

partners per year (Fig. 4A, gray diamonds). The proportional model further suggests295

that only individuals with three or more new heterosexual partners per year, or 21.2%296

of the individuals who had a new partner in the previous year, will infect more than297

one person (R0 > 1). In the more ‘realistic’ linear model, the value of R0 exceeds the298

threshold of one for all individuals with one or more new heterosexual partners in the299

last year, and saturates around three for higher number of partners (Fig. 4A, black300

squares). The differences between the models is also reflected in the value of R0 for the301

entire population. In the classical model, the R0 for chlamydia is 1.26 while it is 1.12302

for the more ‘realistic’ model.303

Screening for and treating of asymptomatic chlamydia infection is the primary strat-304

egy to prevent disease transmission (Althaus et al., 2014). In England, screening for305

women and men is recommended annually and after a change of sexual partner (De-306

partment of Health, 2004). Ideally, screening will decrease R0 below the threshold of307
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ities (right panel) between individuals of sexual activity class i and j. The matrices correspond
to the best-fit (Linear) model from section .
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one. The classical model predicts that low screening rates are sufficient to prevent trans-308

mission in individuals with low numbers of partners but that more than three tests per309

year on average would be necessary to prevent transmission in individuals with many310

partners (right panel of Fig. 4, gray diamonds). Conversely, the ‘more realistic’ model311

illustrates that substantial screening (up to once every year) is already necessary to pre-312

vent transmission in individuals with low numbers of partners per year (right panel of313
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Fig. 4B, black squares).314

Discussion315

This study provides insights into the relationship between the number of sex acts and316

the number of heterosexual partners, and how it affects the transmission dynamics of317

chlamydia and the projected impact of control interventions. We use direct and indi-318

rect methods to infer this relationship from two population-based probability sample319

surveys. Using a direct method based on self-reported values, we find evidence that the320

number of sex acts increases only marginally with the number of sex partners. This321

finding is corroborated using an indirect method based on chlamydia prevalence data,322

which allows us to show that a standard model where the number of sex acts increases323

strictly proportionally with the number of sex partners is less consistent than most other324

models. Noticeably, the most ‘realistic’ model, where the number of sex acts are taken325

into account, provides strong evidence for assortative mixing between individuals with326

different numbers of heterosexual partners. The improved model also suggests that all327

individuals with one or more new heterosexual partners in the last year contribute to328

chlamydia transmission (R0 > 1).329

A major strength of our approach is that our model formulation allows us to exploit330

two large datasets of sexual behavior. This gives us more power to perform model331

comparison and reject those models that are not consistent with the data. It is also332

encouraging that the two methods for inferring the relationship between the number of333

sex acts and the number of sex partners (one based on chlamydia prevalence data and the334

other on self-reported number of sex acts) are in general agreement with one another.335

Note that an advantage of the indirect method is that it only estimates potentially336

infectious, or unprotected, sex acts.337

There are several limitations to our study. First, we pool heterosexual women and338

men together, and do not take age-specific sexual behavior and different ethnic groups339

into account. While the average number of heterosexual partners in women and men340

should be the same, men typically show a higher variability in the number of sex partners341

compared to women (Gouveia-Oliveira and Pedersen, 2009). Our simplifying assumption342

is driven by the aim to keep the number of parameters small and the number of data343

points large enough to be able to statistically compare different models. This is also the344

reason why our analysis is focused on heterosexuals only. Data from larger probability345

sample surveys could potentially improve these limiting aspects. However, stratifying346

the population into women and men in the analysis using the direct method does not347

reveal significant differences between the two sexes (results not shown). Some other348

known important factors that we do not include in the model are concurrency of sexual349

partnerships, condom use and potential sex-specific differences in infection parameters.350

We extend a commonly used STI transmission model, that stratifies the population351

into different sexual activity classes, with a sex acts matrix that describes the average352

numbers of sex acts between individuals of different sexual activity classes. The entries353

of our sex act matrix are either directly or indirectly inferred from data. Others have354

used similar models but could not derive the number of sex acts per partner in such de-355

tail Regan et al. (2008); Garnett et al. (2008). Somewhat different modeling frameworks356

that investigate the importance of sex acts by means of weighted contact networks have357

been developed by Britton et al. (2007) and Moslonka-Lefebvre et al. (2012). These mod-358

els are arguably more realistic than the more commonly used transmission models that359

stratify the population into different sexual activity classes. However, network models360
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have two major disadvantages. First, the heterosexual contact networks for large popu-361

lations are usually not known. Second, we currently lack meaningful summary statistics362

for weighted networks, and model results tend to rely on computationally expensive sim-363

ulations. An alternative extension of our analyses would be to use a recently developed364

framework, that manages to derive analytical results for weighted networks by adopting365

a configuration network approach and using joint probability distributions of number of366

sex partners and number of sex acts Kamp et al. (2013).367

This work also brings new elements to the ongoing debate on the level of assortative368

mixing between heterosexual individuals of different sexual activity classes in the gen-369

eral population. Using the linear relationship between the number of sex acts and sex370

partners from the direct method, we estimate a sexual mixing coefficient of ε = 0.83 for371

Natsal-2 (Table 3). An early study based on partner notification data indicated that a372

proportional mixing model is not an adequate description of the observed sexual mixing373

pattern Granath et al. (1991). Later, Renton et al. (1995) indicated that individuals374

with high rates of sexual partners preferentially select other individuals with high rates375

as partners. Garnett et al. (1996) also found that sexual mixing was weakly assortative376

in patients attending sexually transmitted diseases (STDs) clinics. In contrast, Stoner377

et al. (2000) did not find evidence for assortative mixing in members of gonorrhea and378

chlamydia networks. Finally, it is worth noting that we do not include age as an addi-379

tional factor for assortative mixing. Young adults typically have more new sex partners380

than older individuals, and people prefer sex partners not too different in age. This au-381

tomatically introduces a level of assortative mixing in sexual behavior. This illustrates382

the difficulties in quantifying the degree of sexual mixing, and that the estimates are383

likely to depend on the population studied.384

Our estimates of the basic reproduction number (R0) for chlamydia are consistent385

with values that were investigated in a recent theoretical study that introduced the386

concepts of case and partnership reproduction numbers Heijne et al. (2013). Another387

study based on contact tracing data showed that individual reproduction numbers for388

chlamydia rarely exceed 3.0 Potterat et al. (1999). Interestingly, this is in line with what389

we find for the host-specific basic reproduction numbers from the linear model (Fig. 4A,390

black squares), where R0 saturates around 3.0 for those individuals with a high number391

of sex partners.392

Finally, we show that taking into account the number of sex acts between part-393

ners with different levels of sexual activity can be important in guiding public health394

interventions, such as chlamydia screening programs. Indeed, a high level of assorta-395

tive mixing between individuals of different heterosexual activity classes means that396

chlamydia can easily persist in those sub-populations that are difficult to reach through397

screening. Furthermore, our results also underline that chlamydia control interventions398

should be aimed towards all sexually active young adults as they are likely to contribute399

to ongoing transmission.400
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