Highly structured genetic diversity of the *Mycobacterium tuberculosis* population in Djibouti

S. Godreuil1,2, F. Renaud3, M. Choisy3, J. J. Depina3,4, E. Garnotel3,4, M. Morillon3, P. Van de Perre1 and A. L. Banuls2

1) Université Montpellier I, EA 4205 ‘Transmission, Pathogénie et Prévention de l’Infection par le VIH’, and CHU Montpellier, Laboratoire de Bactériologie-Virologie Arnaud de Villeneuve, Montpellier, 2) GEMI, UMR CNRS-IRD 2724, Centre IRD de Montpellier, 3) Laboratoire de Biologie Médicale, Service de Biologie, HIA Laveran, Marseille, France and 4) Laboratoire de Biologie, Hôpital Paul Faure, Djibouti Ville, Djibouti

Abstract

Djibouti is an East African country with a high tuberculosis incidence. This study was conducted over a 2-month period in Djibouti, during which 62 consecutive patients with pulmonary tuberculosis (TB) were included. Genetic characterization of *Mycobacterium tuberculosis*, using mycobacterial interspersed repetitive-unit variable-number tandem-repeat typing and spoligotyping, was performed. The genetic and phylogenetic analysis revealed only three major families (Central Asian, East African Indian and T). The high diversity and linkage disequilibrium within each family suggest a long period of clonal evolution. A Bayesian approach shows that the phylogenetic structure observed in our sample of 62 isolates is very likely to be representative of the phylogenetic structure of the *M. tuberculosis* population in the total number of TB cases.

Keywords: Djibouti, genetic diversity, *Mycobacterium tuberculosis*, population structure, spoligotyping/MIRU-VNTR

Original Submission: 11 April 2009; Revised Submission: 26 June 2009; Accepted: 3 August 2009

Editor: M. Drancourt

Clin Microbiol Infect

Corresponding author and reprint requests: S. Godreuil, CHU Montpellier, Laboratoire de Bactériologie-Virologie Arnaud de Villeneuve, 371 Avenue du Doyen Gaston Giraud, Montpellier, France

E-mail: godreuil@yahoo.fr

Djibouti is an East African country with a total population of over 819 000. In 2004, the estimated tuberculosis (TB) incidence was 951 cases per 100 000 inhabitants, which is one of the highest incidences in the world [1]. The objectives of this study were to identify the *Mycobacterium tuberculosis* families responsible for the TB cases, and to analyse their genetic diversity and the structure of the *M. tuberculosis* population in an area with this high TB incidence.

The study was conducted over a 2-month period at Paul Faure Hospital in Djibouti City. During this period, 62 consecutive patients with symptomatic disease and sputum culture positive for *M. tuberculosis* complex were included. Spoligotyping [2] and mycobacterial interspersed repetitive-unit variable-number tandem-repeat (MIRU-VNTR) typing [3] was performed with DNA from each isolate. To study the genetic variability, a set of diversity indices, including genotypic diversity and mean genetic diversity (H), was evaluated using F-STAT version 2.9.3 [4]. The population structure was explored by analysis of linkage disequilibrium (LD) and calculation of Fst (index of genetic differentiation between samples) using F-STAT version 2.9.3 [4]. Phylogenetic relationships among the isolates were inferred from spoligotyping and MIRU-VNTR data using UPGMA method and bootstrapping procedures. Tree was built using PAUP 4.0 [5], and TreeDyn software [6] was used for tree visualization and annotation.

The molecular *M. tuberculosis* complex identification methods assigned all 62 isolates to the *M. tuberculosis* complex and to *M. tuberculosis sensu stricto*. Twenty spoligotypes were detected, of which 14 were already known in SpolDB4 [7], and six were undescribed and unique. Three major types were represented: the T family, the Delhi or Central Asian (CAS) family and the East African Indian (EAI) family (Fig. 1). The combined data allowed the generation of 57 distinct patterns, with nine isolates grouped into four clusters (identical genotypes) and 53 isolates with unique patterns (Fig. 1).

All trees built from the different datasets and using different phylogenetic methods clearly distinguished three groups, i.e. the EAI, T and CAS families, sustained by high bootstrap values (>80). The genetic differentiation among these three families was high and significant (EAI vs. T, Fst = 0.65; EAI vs. CAS, Fst = 0.73; T vs. CAS, Fst = 0.72; p <0.05).

An important polymorphism was revealed in this population. The H index was not significantly different in each group and in the whole sample (p =0.05; 0.34). The genotypic diversity index varied with the group (EAI and CAS = 100%; T = 83%; and 92% for the total sample). Moreover, the LD calculated on the basis of MIRU-VNTR data was highly significant in the entire population and in each group (p = 7.2 x 10^-4), suggesting, as already proposed for *M. tuberculosis*, clonal and independent propagation within these phylogenetic lineages.
The phylogenetic structure observed in our sample of 62 isolates is thus very likely to be representative of the phylogenetic structure in the total number of TB cases.

This study provides the first analysis of *M. tuberculosis* families in Djibouti. As compared with SpolDB4, only three major lineages, CAS, T and EAI, were identified, with no genotype external to these three lineages (Fig. 1). The *M. tuberculosis* molecular studies, in both developed and developing countries, usually reveal few clusters associated with a high variety of genotypes and families without strong structuring [10–13]. This is all the more remarkable in that Djibouti has long been considered to be a cosmopolitan country with important immigration from Asian and African countries. Moreover, other major families (LAM, Haarlem and Beijing) circulate in neighbouring African countries (Ethiopia, Kenya and Sudan) and Saudi Arabia [7,14,15].
The CAS and EAI families are prevalent in Central Asia and East Asia, respectively [7]. Two hypotheses could explain the presence of these families in Djibouti: (i) the large Pakistani and South Asian communities in Djibouti may have participated in the introduction of these families; or (ii) these families could have emerged from Djibouti and migrated through Asia, a hypothesis that is in agreement with the suggestion that East Africa is the cradle of *M. tuberculosis* complex species [16].

The LD observed in the entire sample but also in each group and in each area is in agreement with the clonal structure proposed for *M. tuberculosis*. Thus, each lineage can be considered to be a clone that evolves independently. In countries where the TB incidence is low and therapeutic management is effective, the spread of new genotypes is normally rapidly stopped, and these new strains find no opportunity to propagate and evolve [10,17,18]. This would explain the large variety of genotypes with only a few clusters or lineages observed in these low-TB-incidence countries. In Djibouti, we noted only three lineages, and high genetic diversity within each of them. A high incidence of TB in Djibouti: (i) the large Pakistani and South Asian communities in Djibouti may have participated in the introduction of these families; or (ii) these families could have emerged from Djibouti and migrated through Asia, a hypothesis that is in agreement with the suggestion that East Africa is the cradle of *M. tuberculosis* complex species [16].

The population structure observed in this study, three individualized lineages with high genetic diversity, could reflect evolution over a long period of time and a high transmission level of circulating clones in Djibouti. In conclusion, only three major *M. tuberculosis* families were identified in our patients in Djibouti. The high diversity and the strong LD within each family suggest a long period of clonal evolution of the three lineages T, CAS and EAI in Djibouti.

Acknowledgements

The authors acknowledge the assistance of L. Northrup, who edited the manuscript.

Transparency Declaration

We are grateful to the IRD (Institut de Recherche pour le Développement), the CNRS (Centre National de la Recherche Scientifique), the Laboratoire de bactériologie, Hôpital Arnaud-de-Villeneuve, Montpellier France and the Laboratoire de Biologie, Hôpital Paul Faure, Djibouti for financial and technical support. None of the authors has a conflict of interest or any commercial association that may pose a conflict of interest.

References